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Abstract

Multibody affine Structure From Motion (SFM) meth-
ods commonly assume independent motion between objects
such that the ‘measurement matrix’ has rank 4k. When mul-
tiple views are available, each object is then independently
calibrated to a metric co-ordinate frame.

However, articulated motion results in a further decrease
in rank – a fact that we exploit to detect articulated objects
and determine their degrees of freedom using simple linear
methods. Furthermore, these objects cannot be recovered
and calibrated independently since this violates articulation
constraints.

We show that articulation constraints can be imposed
during factorization and self-calibration to recover con-
sistent 3D structure and motion, from which link lengths
and joint angles can be computed. The stability of the
method is evaluated using synthetic data for comparison
with ground truth and results are also presented for real
image sequences.

1. Introduction

Structure From Motion (SFM) methods commonly as-
sume a static scene is imaged by a moving camera. When
perspective effects are sufficiently small, affine projection
may also be assumed. As a result, affine structure and mo-
tion can be recovered from feature tracks using the Sin-
gular Value Decomposition (SVD), as elegantly demon-
strated in the seminal ‘factorization method’ of Tomasi and
Kanade [14].

Subsequent studies have investigatedindependently
moving objectsfor motion segmentation [4], SFM with mo-
tion priors and missing data [8], and perspective camera cal-
ibration [6]. Other work has used the factorization method
to represent deformable objects as a linear combination of
“basis shapes” [1, 2] for small changes in shape.

In this paper, however, we look atarticulated objects
(e.g. furniture, the human body) that cannot be represented
by a single statistical shape model. In this case, the relative

Figure 1. (left) Tracked features and recovered
rotation axis. (right) Recovered 3D structure
and axis of rotation.

motions of the objects aredependentand can be shown [19]
to result in the failure of algorithms that assume indepen-
dent motion (e.g. subspace-based motion segmentation [4]).
If we are to recover accurate structure and motionthat satis-
fies articulation constraints, this dependency should be in-
corporated from the beginning (i.e. during factorization).

Specifically, in this work we show how to detect articu-
lated motion and determine the type of coupling between
two objects from feature tracks alone. In particular, we
show that articulation constraints can be applied as part of
the factorization and self-calibration processes themselves.
The axis (or centre) of rotation can then be projected into
the image with ease whilst link lengths and joint angles are
recovered in a metric co-ordinate frame (Figure 1).

Other than human motion analysis (see [7] for a review),
single frame pose estimation [13] and model-based tracking
systems [5], little attention has been paid to articulated ob-
jects. The only directly related work we know of is that of
Sinclair et al [11] who recover metric articulated structure
and motion using perspective cameras. They assume that
articulation is about a hinge and the axis of rotation is ap-
proximately vertical in the image. Non-linear minimization
is used to find points on the axis and they assume that some
planar structure is visible.



In contrast, we exploit an affine projection model since
the two objects are connected and it is sensible to assume
that their relative depth is small compared to their distance
from the camera. This greatly simplifies the recovery of
articulated structure from motion since we can use linear
methods rather than expensive search and non-linear op-
timization techniques. Furthermore, we do not assume to
know the type of articulationa priori (we recover this from
image data), nor that the axis of rotation is visible in the
image, nor do we require any planar structure (visible or
otherwise). Although we use fixed cameras in these exper-
iments, this is not a requirement and the method is equally
applicable for independently moving cameras.

We outline factorization for articulated objects in Sec-
tion 2 and discuss self-calibration in Section 3. Results are
shown in Section 4 and we conclude in Section 5.

2. Factorization with articulation

In [14] it was shown that a matrix,W, of feature tracks
from a static scene imaged by a moving orthographic cam-
era is at most rank4 since:
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] [
S
1

]
(1)

whereR is a2F × 3 ‘motion’ matrix, t is the2F × 1 pro-
jected centroid of the features over the sequence andS is
the 3 × N matrix of 3D feature locations. Tracks from a
given object therefore lie in a 4D subspace such that affine
structure and motion are recovered by factorization using
the SVD and calibrated to a metric coordinate frame by im-
posing constraints on the rows ofR.

For two independent motions, the ‘motion space’ scales
accordingly such thatrank(W) = 8. However, fordepen-
dentmotions there is a decrease inrank(W) that we use
both to detect articulated motion and to estimate the param-
eters of the joint. For the remainder of the paper, quantities
associated with a second object are primed (e.g.R′, t′, etc).

2.1. Robust motion segmentation

It is necessary to segment the objects in order to group
feature tracks according to the object that generated them.
However, many existing methods are prone to failure in the
presence of dependent motions [4] and gross outliers [17].
We therefore implement a RanSaC strategy for motion seg-
mentation and outlier rejection [15].

Since four points in general position are sufficient to de-
fine an object’s motion, we use samples of four tracks to
find consensus among the rest. Having recovered the first
object’s motion, we remove all corresponding features and

repeat for the second. All remaining feature tracks are re-
jected as outliers since the factorization method uses the
SVD (a linear least squares operation) and gross outliers
severely degrade performance.

Having segmented the motions, we group the columns
of W accordingly and project each object’s features onto
its closestrank = 4 matrix to reduce noise. It is then nec-
essary to compute the SVD again – this time on the com-
bined matrix ofbothsets of tracks – in order to estimate the
parameters of the coupling between them.

2.2. Objects coupled by a universal joint

When two objects are linked by a two or three degree
of freedom ‘universal’ joint (Figure 2), the position of one
body with respect to the other is constrained buttheir rota-
tions are independent.
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Figure 2. Schematic of a universal joint.

In particular, the centre of rotation (or ‘joint centre’) sat-
isfies both motions such that the two 4D subspaces have a
1D intersection andrank(W) = 7. Geometrically:

t + Rd = t′ −R′d′ (2)

and we can show that:

W =
[
R R′ t

] S d
S′ + d′

1 1

 (3)

where the quantities of interest ared = [u, v, w]T and
−d′ = [u′, v′, w′]T , representing the position vectors of the
joint centre in the affine coordinate frames of the first and
second object, respectively.

From Equation (2), it follows that[dT ,d′T ,−1]T lies in
the right (column) nullspace of[R,R′, t′ − t]. As a result,
d andd′ can be recovered onceR, R′, t andt′ are known.

Since t and t′ are the 2D centroids of the two point
clouds, they are simply the row means of the matrix of fea-
ture tracks for the first and second object, respectively. Fol-
lowing [14] we translate each object to the origin, giving the
‘normalized’rank = 6 system:

W̃ =
[
R R′] [

S
S′

]
. (4)



This is effectively “full rank” since the rotations are in-
dependent and have been decoupled from the translations
(where the dependency resides). From Equation (4), we can
recoverR andR′ by factorization using the SVD. In prac-
tice, however, taking the SVD of̃W recovers a full structure
matrix, [V,V′], rather than the block diagonal form seen in
Equation (4). We therefore separate the objects by premul-
tiplying [V,V′] with a matrix,AU :

AU [V,V′] =
[
NL(V′)
NL(V)

]
[V,V′]

=
[
NL(V′)V 0

0 NL(V)V′

]
(5)

where NL(·) is an operator that returns the left (row)
nullspace of its (matrix) argument. Finally, we trans-
form the recovered motion matrix,[U,U′], accordingly:
[U,U′]A−1

U → [R,R′]. Having recoveredR, R′, t and
t′ we can now computed andd′. The reprojected joint
centre is then simplyt + Rd (or t′ −R′d′).

Although in this case we could recoverR and R′ by
factorization of each object independently, here we use a
method that deals with both objects simultaneously for con-
sistency with the hinge case where independent factoriza-
tion is not so straightforward.

2.3. Objects coupled by a hinge

For bodies linked by a hinge (Figure 3),their relative ori-
entation is also constrainedsince their co-ordinate frames
have a common axis that is parallel to the axis of rotation.
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Figure 3. Schematic of a hinge joint.

In this case,all points on the rotation axis satisfy both
motions such that the subspaces have a 2D intersection
andrank(W) = 6. Aligning the rotation axis with thex-
axis by chosing an appropriate global co-ordinate frame,
we denote the motion matrices byR = [c1, c2, c3] and
R′ = [c1, c′2, c

′
3] to give the ‘normalized’ system:

W̃ = [c1 c2 c3 c′2 c′3]


x1 · · ·xn1 x′1 · · ·x′n2

y1 · · · yn1

z1 · · · zn1

y′1 · · · y′n2

z′1 · · · z′n2

 . (6)

Due to the dependency in rotation, factorizing the ob-
jects independently is not straightforward. Using the form
in Equation (6) ensures that both objects have the samex-
axis and respect the “common axis” constraint such that ro-
tations arenot independent. To zero out entries of the re-
covered[V,V′] we premultiply with a matrix,AH :

AH =

 1 0 0 0 0
NL(V′)
NL(V)

 , (7)

and transform[U,U′] accordingly.
Note that the ‘joint centre’ may lie anywhere on the axis

of rotation, provided thatu + u′ = k wherek is the distance
between object centroids parallel to the rotation axis. As
a result,[u + u′, v, w, v′w′,−1]T lies in the nullspace of
[c1, c2, c3, c′2, c

′
3, t

′ − t] and can be recovered with ease.
The reprojected axis of rotation is then given by the line
l(α) = t+[c1, c2, c3][α, v, w]T whereα is any real number.

In this case, we can show that:

W = [c1 c2 c3 c′2 c′3 t]


x x′ + u + u′

y v
z w

y′ + v′

z′ + w′

1 1

 (8)

wherex = [x1, . . . , xn1 ], u = [u, . . . , u], etc.

2.4. Longer kinematic chains

Although we demonstrate this method for two links, it is
equally applicable to longer kinematic chains – each addi-
tional link increasesrank(W) by 4−m wherem=1 for a
universal joint andm=2 for a hinge.

3. Self-calibration

For many applications, it is desirable to recover joint an-
gles and distances between joints. However, lengths and
angles are not preserved in an affine coordinate frame so we
self-calibrate structure and motion to a metric space.

Conventionally, constraints are imposed on the rows of
R so that each2 × 3 block corresponding to a given frame
(denoted byRf ) is close to the first two rows of a scaled
rotation matrix. This is achieved by postmultiplyingR with
a3×3 upper triangular matrix,B. Specifically, if we denote
Rf by:

Rf =
[
iT

jT

]
, (9)

the constraints of unit aspect ratio and zero skew are ex-
pressed algebraically as:



iT BBT i− jT BBT j = 0, (10)

iT BBT j = 0. (11)

These constraints are linear in the elements of the matrix
Ω = BBT , which are recovered by linear least squares [9].

For two motions,B is a 6 × 6 upper triangular matrix
that takes the following form:

B =


a b c

d e
f

a′ b′ c′

d′ e′

1

 (12)

to prevent interaction between the objects. For independent
motions,f=1 (the same as calibrating the objects indepen-
dently) since we cannot constrain the scale factors to be
equal due to the depth/scale ambiguity (unless projection
is known to be truly orthographic).

In contrast, for articulated objects it is sensible to assume
that there is no significant difference in depth between two
bodies as they are attached to each other. As a result, we
constrain the two motion matrices to be equal in scale such
thatf is a free parameter.

Furthermore, for objects joined by a hinge, we have the
additional constraint that the motions share a common axis
wherebyB takes the form:

B =


a b c b′ c′

d e
f

d′ e′

1

 . (13)

However, this means that the constraints onΩ are no
longer linear. Therefore, we perform self-calibration on the
motion matrix[c1, c2, c3, c1, c′2, c

′
3] using a matrix of the

form given in Equation (12). We then rescale the upper3×3
submatrix such thata = a′ and rearrange the elements to
give the form shown in Equation (13).

Note that this is a sub-optimal solution that should be re-
fined further using non-linear optimization techniques. We
defer this for future work in order to demonstrate the accu-
racy that is achieved using purely linear methods.

3.1. Recovering lengths and angles

Premultiplying d and d′ by B−1 gives their metric
equivalent such that underlying link lengths are recovered
within the kinematic structure. For two bodies joined at a
hinge, we choose thex-axis as the axis of rotation such that
(with a slight abuse of notation) at a given frame:

[
c′2 c′3

]
2×2

=
[
c2 c3

]
2×2

[
cos θ − sin θ
sin θ cos θ

]
. (14)

QR decomposition of[c2 c3]−1[c′2 c′3] then gives a ro-
tation matrix from which the angle at the joint,θ, can be
recovered.

4. Results

4.1. Universal joint

Figure 4(left) shows a frame from the ‘Head’ sequence
where a model head was coupled to a box by a ball and
socket joint. Both the box and the head were rotated about
the joint centre to recover structure and motion.

Figure 4. (left) ‘Head’ image with reprojected
features and joint centre. (right) Recovered
3D structure and joint centre.

We see that the recovered joint centre, reprojected into
the image, lies within a few pixels of the true joint centre.
Visual examination of the recovered 3D structure in Fig-
ure 4(right) suggests that the location of the joint centre is
indeed accurate.

4.2. Hinge joint

Similarly, Figure 1(left) shows a frame from the ‘Hinge’
sequence where two boxes were coupled by a hinge joint.
Analysis of the recovered 3D structure (Figure 5) shows that
the recovered axis lies close to the intersection of the two
planes. We stress that edge information is not used in this
method, nor do we compute homographies between planes
in the scene.



Figure 5. Recovered 3D features and rotation
axis from ‘Hinge’ sequence.

4.3. Detecting articulated motion

Since articulated motion results in a drop inrank(W),
the singular values indicate the nature of any dependency.
We used real image sequences of two bodies undergoing (i)
independent motion, (ii) articulated motion at a universal
joint and (iii) articulated motion at a hinge to composeW
and recover its singular values. Table 1 showsσ6, σ7 and
σ8 (scaled such that

∑
σ = 1) plus their ratios where we

see that the type of articulation can be readily observed as a
sharp drop in “effective rank”.

Table 1. Comparison of singular values for dif-
ferent motions

σ × 103

Dependency σ6 σ7 σ8 σ6/σ7 σ7/σ8

None 4.9 4.4 3.0 1.11 1.46
Universal joint 6.1 4.4 0.7 1.39 6.28
Hinge 4.5 0.4 0.3 11.25 1.33

4.4. Recovering joint angles

We now demonstrate the recovery of the joint angle for
the ‘hinge’ sequence. As we did not have ground truth,
we computed the angle independently for two synchronized
views of the same motion and compared the values recov-
ered from each view (Figure 6). We see that there is a error
in angle of up to15◦ as a result of poorly constrained self-
calibration due to limited motion of the base object. Despite
this error, the recovered joint angles exhibit a clear corre-
lation (a more rigorous evaluation of sensitivity follows in
Section 4.5).

As an aside, we note that the signals in Figure 6 could
potentially be used to synchronize two image sequences of
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Figure 6. Recovered joint trajectories for two
sequences.

the same motion. However, specific synchronization meth-
ods exist that may be more appropriate [3, 16, 18].

4.5. Stability and Noise Sensitivity

The factorization algorithm is well known for its robust-
ness, recovering the Maximum Likelihood solution in the
presence of isotropic Gaussian noise [10]. We now show
that the same applies in the articulated case.
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Figure 7. Distribution of joint angle error, over
100 trials, for noise level of σn = 3 pixels.

We generated a synthetic sequence of two bodies un-
dergoing articulated motion and added zero-mean Gaussian
noise ofσn ≈ 3 pixels (typical noise levels were measured
asσn ≈ 1 pixel for real sequences of a similar image size).
From this sequence, the joint angle was recovered using the
described methods and compared with ground truth.

Figure 7 shows that the distribution of error in the joint
angle is typically small, increasing towards frame 155. At
this point, a kinematic singularity occurred such that the
affine depth ambiguity often resulted in the joint angle being
under-estimated. This ambiguity has been a common cause
of complaint in other studies of articulated motion [12].



4.6. Recovering link length

In a similar experiment, we generated a synthetic se-
quence of a three-link chain where both axes of rotation
were parallel. For this sequence, we applied a modified ver-
sion of the method for longer kinematic chains with parallel
axes of rotation. The length of the middle link was then
computed as the distance between the two recovered axes.
Since affine projection means that structure and motion can
only be recovered up to a global scale, we assume ortho-
graphic projection to compare the recovered length with its
ground truth value of134.2 units.

Table 2. Distribution of link length error over
100 trials.

σn

0 1 2 3 4

Mean length 134.2 134.4 134.8 136.1 138.0
Std. dev. 0.000 0.989 2.420 3.327 4.412

Table 2 shows the distribution of error (over 100 trials)
for varying levels of image noise. We see that the recov-
ered length is typically close to the correct value, even at
relatively high levels of noise (typical noise levels for a real
sequence were measured asσn ≈ 1 pixel).

5. Discussion

We have developed the factorization method [14] for ar-
ticulated objects, showing that the rank of a matrix of fea-
ture tracks indicates the type of joint present and that joint
centres and axes of rotation can be recovered using straight-
forward linear methods. Self-calibration was discussed and
results presented for synthetic data (for comparison with
ground truth) and real image sequences. Several avenues
for further development remain:

• Investigation of other dependencies (e.g. prismatic
joints) and degeneracies (e.g. planar structure);

• Generalization to direct methods (i.e. optic flow) so
that the method may be applied to more general se-
quences (e.g. video of humans, although obtaining suf-
ficient flow on a person may prove very difficult with
current camera technology);

• Using the recovered axes and joint centres to define
an object-centred coordinate frame for constrained 3D
registration of non-overlapping feature sets;

• Comparison between statistical shape models [1, 2]
and articulated SFM.
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